Airborne Culturable Fungi in Primary Schools
Building Characteristics and Environmental Factors in Qom, Iran
DOI:
https://doi.org/10.32674/jsard.v8i2.4319Keywords:
Airborne, Fungi, Primary schools, IndoorAbstract
The aim of this current research was to investigate airborne fungi in indoor environments at primary schools. The study also examined the correlation between these fungi and building characteristics, as well as some geographical and meteorological parameters. To achieve this aim, a passive sampling method was used. In this study, 148 samples were collected from the indoor environments of 24 schools located in Qom, Iran. To collect the samples, passive sampling was performed using Petri plates containing Sabouraud dextrose agar (SDA). The characteristics of school buildings were evaluated by checklist. The mean ± SD fungal load of indoor air in selected schools was found to be 10.1 ± 14.0 colonies (CFU/dm2/ h). According to the IMA standard, the majority of the classes (71.7%) were in very good condition. The dominant species were as follows: Aspergillus niger, Aspergillus candidus, and Aspergillus flavus. Furthermore, the fungal load of girls’ schools was significantly higher than that of the boys' schools (p < .05). The correlation analysis using the Pearson test showed that there was a direct correlation between the mean fungal load of classrooms and the number of students (p < .01). The highest concentration of fungi was found on the ground floor and in poor ventilation conditions (p < .05). During the study, it was found that schools located in the western part of Qom, Iran, had a higher concentration of fungi. This can be attributed to their exposure to the prevailing winds and the penetration of outdoor dusty air into indoor environments. The large number of students in each class and the inappropriate ventilation, which are the causes of airborne culturable fungi of these classes, call for the need for proper operation of school buildings.
Downloads
References
Agarwal, R. (2009). Allergic bronchopulmonary aspergillosis. Chest, 135(3), 805-826. DOI: https://doi.org/10.1378/chest.08-2586
Andualem, Z., Gizaw, Z., & Dagne, H. (2019). Indoor culturable fungal load and associated factors among public primary school classrooms in Gondar City, Northwest Ethiopia, 2018: a cross-sectional study. Ethiopian journal of health sciences, 29(5). DOI: https://doi.org/10.4314/ejhs.v29i5.13
Bartlett, K. H., Kennedy, S. M., Brauer, M., Van Netten, C., & Dill, B. (2004). Evaluation and a predictive model of airborne fungal concentrations in school classrooms. Annals of Occupational Hygiene, 48(6), 547-554.
Bayer, C. W., Crow, S. A., & Fischer, J. (1999). Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research.
Cai, G. H., Hashim, J. H., Hashim, Z., Ali, F., Bloom, E., Larsson, L., . . . Norbäck, D. (2011). Fungal DNA, allergens, mycotoxins and associations with asthmatic symptoms among pupils in schools from Johor Bahru, Malaysia. Pediatric allergy and immunology, 22(3), 290-297. DOI: https://doi.org/10.1111/j.1399-3038.2010.01127.x
Chen, Q., & Hildemann, L. M. (2009). The effects of human activities on exposure to particulate matter and bioaerosols in residential homes. Environmental science & technology, 43(13), 4641-4646. DOI: https://doi.org/10.1021/es802296j
Choi, J., Chun, C., Sun, Y., Choi, Y., Kwon, S., Bornehag, C.-G., & Sundell, J. (2014). Associations between building characteristics and children's allergic symptoms–a cross-sectional study on child's health and home in Seoul, South Korea. Building and Environment, 75, 176-181. DOI: https://doi.org/10.1016/j.buildenv.2014.01.019
Crawford, J. A., Rosenbaum, P. F., Anagnost, S. E., Hunt, A., & Abraham, J. L. (2015). Indicators of airborne fungal concentrations in urban homes: Understanding the conditions that affect indoor fungal exposures. Science of The Total Environment, 517, 113-124. DOI: https://doi.org/10.1016/j.scitotenv.2015.02.060
Daisey, J. M., Angell, W. J., & Apte, M. G. (2003). Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor air, 13(LBNL-48287). DOI: https://doi.org/10.1034/j.1600-0668.2003.00153.x
Dumała, S. M., & Dudzińska, M. R. (2013). Microbiological indoor air quality in Polish schools. Annual Set The Environment Protection (Rocznik Ochrona Środowiska), 15, 231-244.
Fahiminia, M., Fard, R. F., Ardani, R., Naddafi, K., Hassanvand, M., & Mohammadbeigi, A. (2016). Indoor radon measurements in residential dwellings in Qom, Iran. INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 14(4), 331-339. DOI: https://doi.org/10.18869/acadpub.ijrr.14.4.331
Fairs, A., Wardlaw, A., Thompson, J., & Pashley, C. H. (2010). Guidelines on ambient intramural airborne fungal spores.
Fard, R., Hosseini, M., Faraji, M., & Oskouei, A. (2018). Building characteristics and sick building syndrome among primary school students. Sri Lanka Journal of Child Health, 47(4), 332-337. DOI: https://doi.org/10.4038/sljch.v47i4.8595
Fard, R. F., Mahvi, A. H., Mahdinia, M., Dehabadi, M., Fard, R. F., Mahvi, A. H., . . . Dehabadi, M. (2018). Data on Emerging Sulfur Dioxide in the Emission of Natural Gas Heater. Ecotoxicology and Environmental Safety, 155, 133-143. DOI: https://doi.org/10.1016/j.dib.2018.09.030
Fard, R. F., Naddafi, K., Hassanvand, M. S., Khazaei, M., & Rahmani, F. (2018). Trends of metals enrichment in deposited particulate matter at semi-arid area of Iran. Environmental Science and Pollution Research, 25(19), 18737-18751. DOI: https://doi.org/10.1007/s11356-018-2033-z
Fard, R. F., Naddafi, K., Yunesian, M., Nodehi, R. N., Dehghani, M. H., & Hassanvand, M. S. (2016). The assessment of health impacts and external costs of natural gas-fired power plant of Qom. Environmental Science and Pollution Research, 23(20), 20922-20936. DOI: https://doi.org/10.1007/s11356-016-7258-0
Fisk, W. J., Lei-Gomez, Q., & Mendell, M. J. (2007). Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor air, 17(4), 284-296. DOI: https://doi.org/10.1111/j.1600-0668.2007.00475.x
Gent, J. F., Kezik, J. M., Hill, M. E., Tsai, E., Li, D.-W., & Leaderer, B. P. (2012). Household mold and dust allergens: exposure, sensitization and childhood asthma morbidity. Environmental research, 118, 86-93. DOI: https://doi.org/10.1016/j.envres.2012.07.005
Goh, I., Obbard, J., Viswanathan, S., & Huang, Y. (2000). Airborne bacteria and fungal spores in the indoor environment. A case study in Singapore. Acta Biotechnologica, 20(1), 67-73. DOI: https://doi.org/10.1002/abio.370200111
Gravesen, S., Larsen, L., Gyntelberg, F., & Skov, P. (1986). Demonstration of Microorganisms and Dust in Schools and Offices: An Observational Study of Non‐Industrial Buildings. Allergy, 41(7), 520-525. DOI: https://doi.org/10.1111/j.1398-9995.1986.tb00337.x
Hargreaves, M., Parappukkaran, S., Morawska, L., Hitchins, J., He, C., & Gilbert, D. (2003). A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia. Science of The Total Environment, 312(1-3), 89-101. DOI: https://doi.org/10.1016/S0048-9697(03)00169-4
Hollenbach, J. P., & Cloutier, M. M. (2014). Implementing school asthma programs: Lessons learned and recommendations. Journal of Allergy and Clinical Immunology, 134(6), 1245-1249. DOI: https://doi.org/10.1016/j.jaci.2014.10.014
Hosseini, M. R., Fouladi-Fard, R., & Aali, R. (2020). COVID-19 pandemic and sick building syndrome. Indoor and Built Environment, 1420326X20935644. DOI: https://doi.org/10.1177/1420326X20935644
Hu, J., Li, N., Zou, S., Yoshino, H., Yanagi, U., Yu, C. W., & Qu, H. (2020). Indoor environmental conditions in schoolchildren’s homes in central-south China. Indoor and Built Environment, 29(7), 956-971. DOI: https://doi.org/10.1177/1420326X19875185
Huang, R., Agranovski, I., Pyankov, O., & Grinshpun, S. (2008). Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions. Indoor air, 18(2), 106-112. DOI: https://doi.org/10.1111/j.1600-0668.2007.00512.x
Hulin, M., Moularat, S., Kirchner, S., Robine, E., Mandin, C., & Annesi-Maesano, I. (2013). Positive associations between respiratory outcomes and fungal index in rural inhabitants of a representative sample of French dwellings. International journal of hygiene and environmental health, 216(2), 155-162. DOI: https://doi.org/10.1016/j.ijheh.2012.02.011
Hyvärinen, A., Sebastian, A., Pekkanen, J., Larsson, L., Korppi, M., Putus, T., & Nevalainen, A. (2006). Characterizing microbial exposure with ergosterol, 3-hydroxy fatty acids, and viable microbes in house dust: determinants and association with childhood asthma. Archives of environmental & occupational health, 61(4), 149-157. DOI: https://doi.org/10.3200/AEOH.61.4.149-157
Jason, C. (2011). Assessment of microbial air contamination of post processed garri on sale in markets. African journal of food science, 5(8), 503-512.
Kercsmar, C. M., Dearborn, D. G., Schluchter, M., Xue, L., Kirchner, H. L., Sobolewski, J., . . . Allan, T. (2006). Reduction in asthma morbidity in children as a result of home remediation aimed at moisture sources. Environmental health perspectives, 114(10), 1574-1580. DOI: https://doi.org/10.1289/ehp.8742
Khazaei, M., Mahvi, A. H., Fard, R. F., Izanloo, H., Yavari, Z., & Tashayoei, H. R. (2013). Dental caries prevalence among Schoolchildren in Urban and Rural areas of Qom Province, Central part of Iran. Middle-East J Sci Res, 18(5), 584-591.
Law, A. K., Chau, C., & Chan, G. Y. (2001). Characteristics of bioaerosol profile in office buildings in Hong Kong. Building and Environment, 36(4), 527-541. DOI: https://doi.org/10.1016/S0360-1323(00)00020-2
Liu, Z., Li, A., Hu, Z., & Sun, H. (2014). Study on the potential relationships between indoor culturable fungi, particle load and children respiratory health in Xi'an, China. Building and Environment, 80, 105-114. DOI: https://doi.org/10.1016/j.buildenv.2014.05.029
Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., & de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. DOI: https://doi.org/10.1016/j.atmosenv.2015.03.026
Massoudinejad, M. R., Ghajari, A., Hezarkhani, N., & Aliyari, A. (2015). Survey of Fungi Bioaerosols in ICU ward of Taleghani Hospital in Tehran by Petri-dish trapping technique and Bioaerosol Sampler in 2013. Irtiqā-yi īminī va pīshgīrī az maṣdūmiyat/ha (ie, Safety Promotion and Injury Prevention), 3(3), 147-154.
Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor air, 15(1), 27-52. DOI: https://doi.org/10.1111/j.1600-0668.2004.00320.x
Mojarrad, H., Fouladi Fard, R., Rezaali, M., Heidari, H., Izanloo, H., Mohammadbeigi, A., . . . Sorooshian, A. (2019). Spatial trends, health risk assessment and ozone formation potential linked to BTEX. Human and Ecological Risk Assessment: An International Journal, 1-22. DOI: https://doi.org/10.1080/10807039.2019.1688640
Moon, K. W., Huh, E. H., & Jeong, H. C. (2014). Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea. Environmental monitoring and assessment, 186(4), 2111-2120. DOI: https://doi.org/10.1007/s10661-013-3521-8
Napoli, C., Tafuri, S., Montenegro, L., Cassano, M., Notarnicola, A., Lattarulo, S., . . . Moretti, B. (2012). Air sampling methods to evaluate microbial contamination in operating theatres: results of a comparative study in an orthopaedics department. Journal of Hospital Infection, 80(2), 128-132. DOI: https://doi.org/10.1016/j.jhin.2011.10.011
Nico, M. A., Liuzzi, S., & Stefanizzi, P. (2015). Evaluation of thermal comfort in university classrooms through objective approach and subjective preference analysis. Applied ergonomics, 48, 111-120. DOI: https://doi.org/10.1016/j.apergo.2014.11.013
Pakpour, S., Li, D.-W., & Klironomos, J. (2015). Relationships of fungal spore concentrations in the air and meteorological factors. Fungal Ecology, 13, 130-134. DOI: https://doi.org/10.1016/j.funeco.2014.09.008
Pasquarella, C., Pitzurra, O., & Savino, A. (2000). The index of microbial air contamination. Journal of Hospital Infection, 46(4), 241-256. DOI: https://doi.org/10.1053/jhin.2000.0820
Pasquarella, C., Vitali, P., Saccani, E., Manotti, P., Boccuni, C., Ugolotti, M., . . . Albertini, R. (2012). Microbial air monitoring in operating theatres: experience at the University Hospital of Parma. Journal of Hospital Infection, 81(1), 50-57. DOI: https://doi.org/10.1016/j.jhin.2012.01.007
Pastuszka, J. S., Paw, U. K. T., Lis, D. O., Wlazło, A., & Ulfig, K. (2000). Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmospheric Environment, 34(22), 3833-3842. DOI: https://doi.org/10.1016/S1352-2310(99)00527-0
Pitzurra, M. (1978). CONTAMINAZIONE MICROBICA DELL'ARIA ATMOSFERICA: CORRELAZIONE FRA DUE DIVERSE METODICHE DI RILEVAZIONE.
Pitzurra, M. (1984). Malattie infettive da ricovero in ospedale: epidemiologia, profilassi e igiene ospedaliera. Ciba-Geigy edizioni.
Pitzurra, M., Savino, A., & Pasquarella, C. (1997). Il monitoraggio ambientale microbiologico (MAM). Ann Ig, 9, 439-454.
Reponen, T., Nevalainen, A., Jantunen, M., Pellikka, M., & Kalliokoski, P. (1992). Normal range criteria for indoor air bacteria and fungal spores in a subarctic climate. Indoor air, 2(1), 26-31. DOI: https://doi.org/10.1111/j.1600-0668.1992.03-21.x
Rodriguez-Tudela, J., Alastruey-Izquierdo, A., Gago, S., Cuenca-Estrella, M., León, C., Miro, J., . . . Denning, D. (2015). Burden of serious fungal infections in Spain. Clinical Microbiology and Infection, 21(2), 183-189. DOI: https://doi.org/10.1016/j.cmi.2014.07.013
Salonen, H., Duchaine, C., Mazaheri, M., Clifford, S., Lappalainen, S., Reijula, K., & Morawska, L. (2015). Airborne viable fungi in school environments in different climatic regions–A review. Atmospheric Environment, 104, 186-194. DOI: https://doi.org/10.1016/j.atmosenv.2015.01.012
Samadi, M. T., Mahvi, A. H., Leili, M., Bahrami, A., Poorolajal, J., Zafari, D., & Tehrani, A. M. (2021). Characteristics and health effects of potentially pathogenic bacterial aerosols from a municipal solid waste landfill site in Hamadan, Iran. Journal of Environmental Health Science and Engineering, 19(1), 1057-1067. DOI: https://doi.org/10.1007/s40201-021-00672-3
Shelton, B. G., Kirkland, K. H., Flanders, W. D., & Morris, G. K. (2002). Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and environmental microbiology, 68(4), 1743-1753. DOI: https://doi.org/10.1128/AEM.68.4.1743-1753.2002
Singh, J., Yu, C. W. F., & Kim, J. T. (2010). Building pathology, investigation of sick buildings—toxic moulds. Indoor and Built Environment, 19(1), 40-47. DOI: https://doi.org/10.1177/1420326X09358808
Sivri, N., Dogru, A. O., Bagcigil, A. F., Metiner, K., & Seker, D. Z. (2020). Assessment of the indoor air quality based on airborne bacteria and fungi measurements in a public school of Istanbul. Arabian Journal of Geosciences, 13(24), 1-16. DOI: https://doi.org/10.1007/s12517-020-06252-3
Soleimani, Z., Goudarzi, G., Naddafi, K., Sadeghinejad, B., Latifi, S. M., Parhizgari, N., . . . Khaefi, M. (2013). Determination of culturable indoor airborne fungi during normal and dust event days in Ahvaz, Iran. Aerobiologia, 29(2), 279-290. DOI: https://doi.org/10.1007/s10453-012-9279-6
Sordillo, J. E., Alwis, U. K., Hoffman, E., Gold, D. R., & Milton, D. K. (2011). Home characteristics as predictors of bacterial and fungal microbial biomarkers in house dust. Environmental health perspectives, 119(2), 189. DOI: https://doi.org/10.1289/ehp.1002004
Torres-Rodríguez, J. M., Pulido-Marrero, Z., & Vera-García, Y. (2012). Respiratory allergy to fungi in Barcelona, Spain: Clinical aspects, diagnosis and specific treatment in a general allergy unit. Allergologia et immunopathologia, 40(5), 295-300. DOI: https://doi.org/10.1016/j.aller.2011.09.003
Vacher, G., Niculita-Hirzel, H., & Roger, T. (2015). Immune responses to airborne fungi and non-invasive airway diseases. Seminars in immunopathology, DOI: https://doi.org/10.1007/s00281-014-0471-3
Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80, 136-149. DOI: https://doi.org/10.1016/j.buildenv.2014.05.030
Wang, X., Huang, C., Liu, W., Zou, Z., Lu, R., Shen, L., & Chang, J. (2015). On-Site Measurement of Airborne Fungi in Shanghai Residences. Procedia Engineering, 121, 404-409. DOI: https://doi.org/10.1016/j.proeng.2015.08.1085
Whyte, W., Hambraeus, A., Laurell, G., & Hoborn, J. (1992). The relative importance of the routes and sources of wound contamination during general surgery. II. Airborne. Journal of Hospital Infection, 22(1), 41-54. DOI: https://doi.org/10.1016/0195-6701(92)90129-A
Wu, P.-C., Li, Y., Chiang, C., Huang, C., Lee, C.-C., Li, F., & Su, H. (2005). Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings. Indoor air, 15(1), 19-26. DOI: https://doi.org/10.1111/j.1600-0668.2004.00313.x
Yamamoto, N., Schmechel, D., Chen, B. T., Lindsley, W. G., & Peccia, J. (2011). Comparison of quantitative airborne fungi measurements by active and passive sampling methods. Journal of Aerosol Science, 42(8), 499-507. DOI: https://doi.org/10.1016/j.jaerosci.2011.05.004
Zhang, X., Zhao, Z., Nordquist, T., Larsson, L., Sebastian, A., & Norback, D. (2011). A longitudinal study of sick building syndrome among pupils in relation to microbial components in dust in schools in China. Science of The Total Environment, 409(24), 5253-5259. DOI: https://doi.org/10.1016/j.scitotenv.2011.08.059
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal of School Administration Research and Development
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All published articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License.